Applications of b^*g_*-Closed Sets and b^*g_*-Functions in Topological Spaces

M. Vigneshwaran\(^1\) and S. Saranya\(^2\)

Assistant Professor\(^1\) and Research Scholar\(^2\)
PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore-641 029, Tamil Nadu.
E-mail Id: vignesh.mat@gmail.com and saranyasree1107@gmail.com

Abstract: The aim of this paper is to introduce a new class of sets called b^*g_*-closed sets in topological spaces. We also introduce b^*g_*-continuous function, b^*g_*-irresolute function, b^*g_*-open map, b^*g_*-closed map and b^*g_*-homeomorphisms. Moreover we define some spaces based on b^*g_*-closed sets in topological spaces.

Keywords: b^*g_*-closed sets; b^*g_*-continuous; b^*g_*-irresolute; $\mathcal{J}_{b^*g_*}$-space; $*_nT_{1/2}$ ***-space; $*_nT_{***}$-space; b^*g_*-homeomorphisms

I. INTRODUCTION

N. Levine\([8]\) introduced generalized-closed sets in topological spaces and a class of topological space called $T_{1/2}$-spaces. D. Andrijevic\([1]\) introduced and investigated b-open sets. M. Vigneshwaran and R. Devi\([18]\) introduced *g_*-closed sets in topological spaces. K. Ayswarya\([3]\) introduced and derived the properties of s^*g_*-closed sets. M. Vigneshwaran and K. Baby\([17]\) introduced β^*g_*-closed sets in topological spaces. K. Geetha and M. Vigneshwaran\([6]\) introduced and studied the properties of p^*g_*-closed sets in topological spaces.

In this paper, we introduce a new class of sets called b^*g_*-closed sets in topological spaces. By using this set, we have introduced $\mathcal{J}_{b^*g_*}$, $*_nT_{1/2}$ ***, $*_{b^*g_*}$, $*_nT_{***}$ and $*_nT_{***}$-spaces. We also introduce the notion of b^*g_*-continuous, b^*g_*-irresoluteness, b^*g_*-open map, b^*g_*-closed map and b^*g_*-homeomorphisms.

II. PRILIMINARIES

Throughout this paper (X, τ), (Y, σ) and (Z, η) represent topological space. For a subset A of a space (X, τ), $\text{cl}(A)$ and $\text{int}(A)$ denote the closure of A and the interior of A respectively. Let us recall the following definitions.

Definition: 2.1

A subset A of a topological space (X, τ) is called,

- a semi-open set if $A \subseteq \text{cl}(\text{int}(A))$ and a semi-closed set if $\text{int}(\text{cl}(A)) \subseteq A$,
- a pre-open set if $A \subseteq \text{int}(\text{cl}(A))$ and a pre-closed set if $\text{cl}(\text{int}(A)) \subseteq A$,
- an α-open set if $A \subseteq \text{int}(\text{cl}(A))$ and an α-closed set if $\text{cl}(\text{int}(A)) \subseteq A$,
- a semi-preopen set(β-open) if $A \subseteq \text{cl}(\text{int}(A))$ and a semi-preclosed set(β-closed) if $\text{int}(\text{cl}(A)) \subseteq A$,
- a b-open set if $A \subseteq \text{cl}(\text{int}(A)) \cup \text{int}(\text{cl}(A))$ and b-closed set if $\text{cl}(\text{int}(A)) \cup \text{int}(\text{cl}(A)) \subseteq A$.
Definition: 2.2
A subset A of a topological space (X, τ) is called

- a g-closed set[8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ),
- a ψ-closed set[14] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open in (X, τ),
- a g^*-closed set[13] if $d(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ),
- a $g^\#$-closed set[15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ag-open in (X, τ),
- a $g^\#s$-closed set[16] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is ag-open in (X, τ),
- a $g^\#\alpha$-closed set[12] if $acl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$-open in (X, τ),
- a $g^\#\psi$-closed set[14] if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ),
- a $^*g\alpha$-closed set[18] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$-open in (X, τ),
- an $^*ag\alpha$-closed set[7] if $acl(A) \subseteq U$ whenever $A \subseteq U$ and U is $^*g\alpha$-open in (X, τ),
- an $^*g\alpha$-closed[3] set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $^*g\alpha$-open in (X, τ),
- a gsp-closed set[5] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ).

Definition: 2.3
A space (X, τ) is called

- a $T_b^\#$-space [16], if every $g^\#s$-closed set is closed,
- an $T_{1/2}^*\#$-space [18], if every $^*g\alpha$-closed set is closed,
- an $T_{1/2}^\#$-space [12], if every $g^\#\alpha$-closed set is g^*-closed,
- a $T_{1/2}^*\$-space [13], if every g^*-closed set is closed,
- an $T_{1/2}^*\$-space [7], if every $^*g\alpha$-closed set is closed,
- an $T_{1/2}^*\$-space [3], if every $s^*g\alpha$-closed set is closed,
- an $T_{1/2}^*\$-space [7], if every $^*g\alpha$-closed set is $^*g\alpha$-closed,
- a $^*T_{1/2}^*\$-space [3], if every $s^*g\alpha$-closed set is $^*g\alpha$-closed.

Definition: 2.4
A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

- g-continuous[8] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ),
- $^*g\alpha$-continuous[13] if $f^{-1}(V)$ is $^*g\alpha$-closed set of (X, τ) for every closed set V of (Y, σ),
- $^*g\alpha$-continuous[18] if $f^{-1}(V)$ is $g\alpha$ -closed set in (X, τ) for every closed set V of (Y, σ),
- $^*g\alpha$-continuous[12] if $f^{-1}(V)$ is $^*g\alpha$-closed set in (X, τ) for every closed set V of (Y, σ),
- $g^\#s$-continuous[16] if $f^{-1}(V)$ is $g^\#s$-closed set in (X, τ) for every closed set V of (Y, σ),
- $^*g\psi$-continuous[14] if $f^{-1}(V)$ is $^*g\psi$-closed set in (X, τ) for every closed set V of (Y, σ),
- $^*ag\alpha$-continuous[7] if $f^{-1}(V)$ is $^*ag\alpha$ -closed set in (X, τ) for every closed set V of (Y, σ),
- $s^*g\alpha$-continuous[3] if $f^{-1}(V)$ is $s^*g\alpha$ -closed set in (X, τ) for every closed set V of (Y, σ).

Notation 2.5:
For a space (X, τ), $C(X, \tau)$ denote the class of all closed subsets of (X, τ).

III. BASIC PROPERTIES OF $b^*g\alpha$-CLOSED SETS

We introduce the following definition.

Definition: 3.1
A subset A of (X, τ) is called a $b^*g\alpha$-closed set if $bc(A) \subseteq U$ whenever $A \subseteq U$ and U is $^*g\alpha$-open in (X, τ).
Theorem: 3.2
Every closed set is b*ga-closed set.

Proof:
Let A ⊆ U, where U is *ga-open set in (X, τ). Since A is closed, cl(A) = A. But bcl(A) ⊆ cl(A) = A, which implies bcl(A) ⊆ U. Hence A is b*ga-closed.

The converse of the above theorem need not be true by the following example.

Example: 3.3
Let X = {a, b, c} with τ = {X, φ, {a}, {c}, {a, c}}. C(X, τ) = {X, φ, {b}, {a, b}, {b, c}} and b*ga C(X, τ) = {X, φ, {b}, {c}, {a, b}, {b, c}}. Here {a} and {c} are b*ga-closed but not closed.

Theorem: 3.4
Every b-closed set is b*ga-closed set.

Proof:
Let A ⊆ U, where U is *ga-open set in (X, τ). Since A is b-closed, bcl(A) = A. Therefore bcl(A) ⊆ U. Hence A is b*ga-closed.

The converse of the above theorem need not be true by the following example.

Example: 3.5
Let X = {a, b, c} with τ = {X, φ, {a}, {a, b}}. b C(X, τ) = {X, φ, {b}, {c}, {b, c}} and b*ga C(X, τ) = {X, φ, {b}, {c}, {a, c}}. Here {a, c} is b*ga-closed but not b-closed.

Theorem: 3.6
Every α-closed, semi-closed, pre-closed set is b*ga-closed set.

Proof:
Let A ⊆ U, where U is *ga-open set in (X, τ). Since A is an α-closed, semi-closed and a pre-closed set, then bcl(A) ⊆ αcl(A) = A, also bcl(A) ⊆ scl(A) = A, and also bcl(A) ⊆ pcl(A) = A, which implies bcl(A) ⊆ U. Therefore A is b*ga-closed.

The converse of the above theorem need not be true by the following example.

Example: 3.7
Let X = {a, b, c} with τ = {X, φ, {a}, {a, b}}. α C(X, τ) = {X, φ, {b}, {c}, {b, c}} = SC(X, τ) = PC(X, τ) and b*ga C(X, τ) = {X, φ, {b}, {c}, {b, c}, {a, c}}. Here {a, c} is b*ga-closed but not α-closed, semi-closed and pre-closed.

Theorem: 3.8
Every *ga-closed set is b*ga-closed set.

Proof:
Let A ⊆ U, where U is *ga-open set in (X, τ). Since every *ga-open set is ga-open, U is ga-open. Since A is *ga-closed in (X, τ), cl(A) ⊆ U. But bcl(A) ⊆ cl(A) ⊆ U, which implies bcl(A) ⊆ U. Therefore A is b*ga-closed.

The converse of the above theorem need not be true by the following example.

Example: 3.9
Let X = {a, b, c} with τ = {X, φ, {a}, {c}, {a, c}}. *ga C(X, τ) = {X, φ, {b}, {a, b}, {b, c}} and b*ga C(X, τ) = {X, φ, {a}, {b}, {c}, {a, b}, {b, c}}. Here {a} and {c} are b*ga-closed but not *ga-closed.

Theorem: 3.10
Every g#α-closed, g*ψ-closed and g#s-closed set is b*ga-closed set.

Proof:
Let A ⊆ U, where U is *ga-open set in (X, τ). Since every *ga-open set is g-open, U is g-open. Since A is g#α-closed in (X, τ), then acl(A) ⊆ U, but bcl(A) ⊆ acl(A) ⊆ U also A is g*ψ-closed in (X, τ) then ψcl(A) ⊆ U, but bcl(A) ⊆ ψcl(A) ⊆ U and also every *ga-open set is αg-open, U is αg-open. Since A is g#s-closed in (X, τ), scl(A) ⊆ U. But bcl(A) ⊆ scl(A) ⊆ U, which implies bcl(A) ⊆ U. Therefore A is b*ga-closed.

The converse of the above theorem need not be true by the following example.
We introduce the following definition.

Definition 3.11

Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$. $g^*\alpha C(X, \tau) = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}\}$ and $b^*g^*\alpha C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$. Here $\{a\}$ and $\{c\}$ are $b^*g^*\alpha$-closed but not $g^*\alpha$-closed, $g^*\psi$-closed and g^*s-closed.

Theorem 3.12

Every g^*-closed set is $b^*g^*\alpha$-closed.

Proof:

Let $A \subseteq U$, where U is $*g^*\alpha$-open set in (X, τ). Since every $*g^*\alpha$-open set is g-open, U is g-open. Since A is g^*-closed in (X, τ), $cl(A) \subseteq U$. But $bcl(A) \subseteq cl(A) \subseteq U$, which implies $bcl(A) \subseteq U$. Therefore A is $b^*g^*\alpha$-closed.

The converse of the above theorem need not be true by the following example.

Example 3.13

Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$. $g^* C(X, \tau) = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}\}$ and $b^*g^* C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$. Here $\{a\}$ and $\{c\}$ are $b^*g^*\alpha$-closed but not $g^*\alpha$-closed.

Theorem 3.14

Every $*g\alpha\alpha$-closed set is $b^*g^*\alpha$-closed.

Proof:

Let $A \subseteq U$, where U is $*g\alpha\alpha$-open set in (X, τ). Since A is $*g\alpha\alpha$-closed set, $\alpha cl(A) \subseteq U$. But $bcl(A) \subseteq \alpha cl(A) \subseteq U$, which implies $bcl(A) \subseteq U$. Therefore A is $b^*g^*\alpha$-closed.

The converse of the above theorem need not be true by the following example.

Example 3.15

Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$. $b^*g^*\alpha C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}\}$ and $*g\alpha\alpha C(X, \tau) = \{X, \phi, \{c\}, \{b, c\}, \{a, c\}\}$. Here $\{a\}$ and $\{b\}$ are $b^*g^*\alpha$-closed but not $*g\alpha\alpha$-closed.

Theorem 3.16

Every $s^*g\alpha\alpha$-closed set is $b^*g^*\alpha$-closed.

Proof:

Let $A \subseteq U$, where U is $*g\alpha\alpha$-open set in (X, τ). Since A is $s^*g\alpha\alpha$-closed set, $\alpha cl(A) \subseteq U$. But $bcl(A) \subseteq \alpha cl(A) \subseteq U$, which implies $bcl(A) \subseteq U$. Therefore A is $b^*g^*\alpha$-closed.

The converse of the above theorem need not be true by the following example.

Example 3.17

Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$. $s^*g\alpha\alpha C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}\}$ and $s^*g\alpha\alpha C(X, \tau) = \{X, \phi, \{c\}, \{b, c\}, \{a, c\}\}$. Here $\{a\}$ and $\{b\}$ are $b^*g^*\alpha$-closed but not $s^*g\alpha\alpha$-closed.

Theorem 3.18

Every $b^*g^*\alpha$-closed set is gsp-closed set.

Proof:

Let $A \subseteq U$, where U is open set in (X, τ). Since every open set is $*g\alpha\alpha$-open, U is $*g\alpha\alpha$-open. Since A is $b^*g^*\alpha$-closed set, $bcl(A) \subseteq U$. But $spcl(A) \subseteq cl(A) \subseteq U$, which implies $spcl(A) \subseteq U$. Therefore A is gsp-closed.

The converse of the above theorem need not be true by the following example.

Example 3.19

Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{c\}, \{a, c\}\}$. $b^*g^*\alpha C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}\}$ and $gsp C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Here $\{b\}$ and $\{a, b\}$ are gsp-closed but not $b^*g^*\alpha$-closed.

IV. APPLICATIONS OF $b^*g^*\alpha$-CLOSED SETS

We introduce the following definition.

Definition 4.1

A space (X, τ) is called a $T_{b^*g^*\alpha}$-space if every $b^*g^*\alpha$-closed set is closed.

The following theorem gives the characterization of $T_{b^*g^*\alpha}$-space.
Theorem 4.2

Every T_{b^*ga}-space is a $T_{1/2^{**}}$-space.

Proof:

Let A be a g^*gt-closed set of (X, τ). Since every g^*gt-closed set is b^*gt-closed, A is b^*gt-closed. Since X is T_{b^*ga}-space, A is closed. Therefore (X, τ) is $T_{1/2^{**}}$-space.

The converse of the above theorem need not be true by the following example.

Example 4.3

Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{b\}, \{a, c\}\}$. $C(X, \tau) = \{X, \phi, \{b\}, \{a, c\}\}; g^*at C(X, \tau) = \{X, \phi, \{b\}, \{a, c\}\}$

and $b^*gt C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. Here (X, τ) is $T_{1/2^{**}}$-space but not T_{b^*ga}-space.

Since $\{a\}, \{c\}, \{a, b\}$ and $\{b, c\}$ are b^*gt-closed but not closed.

Theorem 4.4

Every T_{b^*ga}-space is a T_b^*-space.

Proof:

Let A be a gs^*-closed set of (X, τ). Since every gs^*-closed set is b^*gt-closed, A is b^*gt-closed. Since X is T_{b^*ga}-space, A is closed. Therefore (X, τ) is T_b^*-space.

The converse of the above theorem need not be true by the following example.

Example 4.5

Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{c\}, \{a, b\}\}$. $C(X, \tau) = \{X, \phi, \{c\}, \{a, b\}\}; gs^* C(X, \tau) = \{X, \phi, \{c\}, \{a, b\}\}$

and $b^*gt C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. Here (X, τ) is T_b^*-space but not T_{b^*ga}-space. Since $\{a\}, \{b\}, \{a, c\}$ and $\{b, c\}$ are b^*gt-closed but not gs^*-closed.

Theorem 4.6

Every T_{b^*ga}-space is a $T_{1/2}^{**}$-space.

Proof:

Let A be a gs^*-closed set of (X, τ). Since every gs^*-closed set is b^*gt-closed, A is b^*gt-closed. Since X is T_{b^*ga}-space, A is closed. Since every closed set is g-closed, A is g-closed. Therefore (X, τ) is $T_{1/2}^{**}$-space.

The converse of the above theorem need not be true by the following example.

Example 4.7

Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. $C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}; g^*at C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}$

and $b^*gt C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. Here (X, τ) is $T_{1/2}^{**}$-space but not T_{b^*ga}-space.

Since $\{b\}, \{c\}, \{a, b\}$ and $\{a, c\}$ are b^*gt-closed but not gs^*-closed.

Theorem 4.8

Every T_{b^*ga}-space is a $T_{1/2}^{*}$-space.

Proof:

Let A be a g^*-closed set of (X, τ). Since every g^*-closed set is b^*gt-closed, A is b^*gt-closed. Since X is T_{b^*ga}-space, A is closed. Therefore (X, τ) is $T_{1/2}^{*}$-space.

The converse of the above theorem need not be true by the following example.

Example 4.9

Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. $C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}; g C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}$

and $b^*gt C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. Here (X, τ) is $T_{1/2}^{*}$-space but not T_{b^*ga}-space. Since $\{b\}, \{c\}, \{a, b\}$ and $\{a, c\}$ are b^*gt-closed but not g^*-closed.
Theorem: 4.10

Every \(cT_{b*gz} \)-space is \(*T_{1/2}^{**} \)-space.

Proof:

Let \(A \) be \(*\text{gz} \)-closed set of \((X, \tau)\). Since every \(*\text{gz} \)-closed set is \(b*gz \)-closed, \(A \) is \(b*gz \)-closed. Since \(X \) is \(cT_{b*gz} \)-space, \(A \) is closed. Therefore \((X, \tau)\) is \(*T_{1/2}^{**} \)-space.

The converse of the above theorem need not be true by the following example.

Example: 4.11

Let \(X = \{a, b, c\} \) with \(\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \). \(C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}, \{a, c\}\} \); \(b*gz \) \(C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}\} \) and \(*\text{gz} \) \(C(X, \tau) = \{\phi, X, \{c\}, \{b, c\}, \{a, c\}\} \). Here \((X, \tau)\) is \(*T_{1/2}^{**} \)-space but not \(cT_{b*gz} \)-space. Since \(\{a\} \) and \(\{b\} \) are \(b*gz \)-closed but not \(*\text{gz} \)-closed.

We introduce the following definition.

Definition: 4.12

A space \((X, \tau)\) is called \(*_{b}T_{1/2}^{***} \)-space if every \(b*gz \)-closed set is \(*\text{gz} \)-closed.

The following theorems give the characterizations of \(*_{b}T_{1/2}^{***} \)-space.

Theorem: 4.13

Every \(*_{b}T_{1/2}^{***} \)-space is \(*_{s}T_{1/2}^{***} \)-space.

Proof:

Let \(A \) be \(*\text{gz} \)-closed set of \((X, \tau)\). Since every \(*\text{gz} \)-closed set is \(b*gz \)-closed, \(A \) is \(b*gz \)-closed. Since \(X \) is \(*_{b}T_{1/2}^{***} \)-space, \(A \) is \(*\text{gz} \)-closed. Therefore \((X, \tau)\) is \(*_{s}T_{1/2}^{***} \)-space.

The converse of the above theorem need not be true by the following example.

Example: 4.14

Let \(X = \{a, b, c\} \) with \(\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \). \(C(X, \tau) = \{X, \phi, \{c\}, \{b, c\}, \{a, c\}\} \); \(b*gz \) \(C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}\} \) and \(*\text{gz} \) \(C(X, \tau) = \{\phi, X, \{c\}, \{b, c\}, \{a, c\}\} \). Here \((X, \tau)\) is \(*_{s}T_{1/2}^{***} \)-space but not \(*_{b}T_{1/2}^{***} \)-space. Since \(\{a\} \) and \(\{b\} \) are \(b*gz \)-closed but not \(*\text{gz} \)-closed.

Theorem: 4.15

Every \(*_{b}T_{1/2}^{***} \)-space is \(*_{s}T_{1/2}^{***} \)-space.

Proof:

Let \(A \) be \(s*\text{gz} \)-closed set of \((X, \tau)\). Since every \(s*\text{gz} \)-closed set is \(b*gz \)-closed, \(A \) is \(b*gz \)-closed. Since \(X \) is \(*_{b}T_{1/2}^{***} \)-space, \(A \) is \(*\text{gz} \)-closed. Therefore \((X, \tau)\) is \(*_{s}T_{1/2}^{***} \)-space.

The converse of the above theorem need not be true by the following example.
Example: 4.16

Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a, b\}\}$. $C(X, \tau) = \{X, \phi, \{c\}\}$; $b^{*}\text{g}_{\alpha}C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}\}$. $s^{*}\text{g}_{\alpha}C(X, \tau) = \{X, \phi, \{c\}, \{a, c\}\}$ and $s^{*}\text{g}_{\alpha}C(X, \tau) = \{X, \phi, \{c\}, \{a, c\}\}$.

We introduce the following definition.

Definition: 4.17

A space (X, τ) is called $^{*}_{b}T_{1/2}$-space if every $b^{*}\text{g}_{\alpha}$-closed set is g^{*}-closed.

Theorem: 4.18

Every $^{*}_{b}T_{1/2}$-space is $^sT_{1/2}$-space.

Proof:

Let A be a $g^{*}\alpha$-closed set of (X, τ). Since X is $^{*}_{b}T_{1/2}$-space, A is $b^{*}\text{g}_{\alpha}$-closed. Since every $b^{*}\text{g}_{\alpha}$-closed set is $*\text{g}_{\alpha}$-closed, A is $*\alpha\text{g}_{\alpha}$-closed. Therefore (X, τ) is $^{*}_{b}T_{1/2}$-space.

The converse of the above theorem need not be true by the following example.

Example: 4.19

Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. $C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}$; $b^{*}\text{g}_{\alpha}C(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}\}$. $s^{*}\text{g}_{\alpha}C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}$ and $s^{*}\text{g}_{\alpha}C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}$.

We introduce the following definitions.

Definition: 4.20

(i) A space (X, τ) is called $^{*}_{b}T_{***}$-space if every $b^{*}\text{g}_{\alpha}$-closed set is $*\text{g}_{\alpha}$-closed.

(ii) A space (X, τ) is called $^{*}_{b}sT_{***}$-space if every $b^{*}\text{g}_{\alpha}$-closed set is $s^{*}\text{g}_{\alpha}$-closed.

Theorem: 4.21

(i) Every $^{*}_{b}T_{1/2}$-space is $^{*}_{b}T_{***}$-space.

(ii) Every $^{*}_{b}T_{1/2}$-space is $^{*}_{b}sT_{***}$-space.

Proof:

(i) Let A be a $b^{*}\text{g}_{\alpha}$-closed set of (X, τ). Since X is $^{*}_{b}T_{1/2}$-space, A is $*\text{g}_{\alpha}$-closed. Since every $*\text{g}_{\alpha}$-closed set is $*\text{g}_{\alpha}$-closed, A is $*\text{g}_{\alpha}$-closed. Therefore (X, τ) is $^{*}_{b}T_{***}$-space.

(ii) Let A be a $b^{*}\text{g}_{\alpha}$-closed set of (X, τ). Since X is $^{*}_{b}T_{1/2}$-space, A is $*\text{g}_{\alpha}$-closed. Since every $*\text{g}_{\alpha}$-closed set is $s^{*}\text{g}_{\alpha}$-closed, A is $s^{*}\text{g}_{\alpha}$-closed. Therefore (X, τ) is $^{*}_{b}sT_{***}$-space.
The converse of the above theorem need not be true by the following example.

Example: 4.22

Let \(X = \{a, b, c\} \) with \(\tau = \{X, \phi, \{a\}, \{b, c\}\} \). \(C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}; b^*g_{\alpha} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}; \)
\[
\begin{align*}
& \{a, b\} \{b, c\}, \{a, c\}; \quad \ast_{g_{\alpha}} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \\
& \{a, b\} \{b, c\}, \{a, c\}; \quad \ast_{2g_{\alpha}} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \\
& \{a, b\} \{b, c\}, \{a, c\}; \quad \ast_{3g_{\alpha}} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\}.
\end{align*}
\]

V. \(b^*g_{\alpha} \)-CONTINUOUS and IRRESOLUTE FUNCTIONS

Definition: 5.1

A function \(f: (X, \tau) \to (Y, \sigma) \) is called \(b^*g_{\alpha} \)-continuous if \(f^{-1}(V) \) is a \(b^*g_{\alpha} \)-closed set of \((X, \tau) \) for every closed set \(V \) of \((Y, \sigma) \).

Theorem: 5.2

Every continuous map is \(b^*g_{\alpha} \)-continuous map.

Proof:

Let \(V \) be a closed set in \((Y, \sigma) \). Since \(f \) is continuous, \(f^{-1}(V) \) is closed in \((X, \tau) \). But every closed set is \(b^*g_{\alpha} \)-closed set. Hence \(f^{-1}(V) \) is \(b^*g_{\alpha} \)-closed set in \((X, \tau) \). Hence every continuous map is \(b^*g_{\alpha} \)-continuous map.

The converse of the above theorem need not be true by the following example.

Example: 5.3

\(b^*g_{\alpha} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \). \(b^*g_{\alpha} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \) and \(b^*g_{\alpha} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \) and \(b^*g_{\alpha} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \) and \(b^*g_{\alpha} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \). Let \(f: (X, \tau) \to (Y, \sigma) \) be defined as, \(f(a) = a, f(b) = c \) and \(f(c) = b \). Then \(f \) is \(b^*g_{\alpha} \)-continuous but not \(*g_{\alpha} \)-continuous. Since \(f^{-1}(a, c) = \{a, b\} \) is not closed in \((X, \tau) \).

Theorem: 5.4

Every \(*g_{\alpha} \)-continuous map is \(b^*g_{\alpha} \)-continuous map.

Proof:

Let \(V \) be a closed set in \((Y, \sigma) \). Since \(f \) is \(*g_{\alpha} \)-continuous, \(f^{-1}(V) \) is a \(*g_{\alpha} \)-closed in \((X, \tau) \). But every \(*g_{\alpha} \)-closed set is \(b^*g_{\alpha} \)-closed set. Hence \(f^{-1}(V) \) is a \(b^*g_{\alpha} \)-closed set in \((X, \tau) \). Hence \(f \) is \(b^*g_{\alpha} \)-continuous. Hence every \(*g_{\alpha} \)-continuous map is \(b^*g_{\alpha} \)-continuous map.

The converse of the above theorem need not be true by the following example.

Example: 5.5

\(b^*g_{\alpha} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \) and \(b^*g_{\alpha} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \) and \(b^*g_{\alpha} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \) and \(b^*g_{\alpha} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \). Let \(f: (X, \tau) \to (Y, \sigma) \) be defined as, \(f(a) = b, f(b) = a \) and \(f(c) = c \). Then \(f \) is \(b^*g_{\alpha} \)-continuous but not \(*g_{\alpha} \)-continuous. Since \(f^{-1}(a, c) = \{b, c\} \) is not closed in \((X, \tau) \).

Theorem: 5.6

Every \(g_{\alpha} \)-continuous map is \(b^*g_{\alpha} \)-continuous.

Proof:

Let \(V \) be a closed set in \((Y, \sigma) \). Since \(f \) is \(g_{\alpha} \)-continuous map. Therefore \(f^{-1}(V) \) is a \(g_{\alpha} \)-closed set in \((X, \tau) \). But every \(g_{\alpha} \)-closed set is \(b^*g_{\alpha} \)-closed set. Hence \(f^{-1}(V) \) is a \(b^*g_{\alpha} \)-closed set in \((X, \tau) \). Hence \(f \) is \(b^*g_{\alpha} \)-continuous. Hence every \(g_{\alpha} \)-continuous map is \(b^*g_{\alpha} \)-continuous map.

The converse of the above theorem need not be true by the following example.

Example: 5.7

\(b^*g_{\alpha} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \) and \(b^*g_{\alpha} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \) and \(b^*g_{\alpha} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \) and \(b^*g_{\alpha} C(X, \tau) = \{X, \phi, \{a\}, \{b, c\}\} \). Let \(f: (X, \tau) \to (Y, \sigma) \) be defined as, \(f(a) = a, f(b) = b \) and \(f(c) = c \). Then \(f \) is \(b^*g_{\alpha} \)-continuous but not \(g_{\alpha} \)-continuous. Since \(f^{-1}(a, b) = \{a, b\} \) is not \(g_{\alpha} \)-closed in \((X, \tau) \).
Theorem: 5.8
Every g#s-continuous map is b*gα-continuous map.

Proof:
Let V be a closed set in (Y, σ). Since f is g#s-continuous map. Therefore f⁻¹(V) is a g#s-closed in (X, τ). But every g#s-closed set is b*gα-closed set. Hence f⁻¹(V) is b*gα-closed set in (X, τ). Hence f is b*gα-continuous. Therefore every g#s-continuous map is b*gα-continuous map.

The converse of the above theorem need not be true by the following example.

Example: 5.9
Let X = {a, b, c} = Y with τ = {X, φ, {a}, {b, c}}, σ = {Y, φ, {c}}, g#s C(X, τ) = {X, φ, {a}, {b, c}} and b*gα C(X, τ) = {X, φ, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}}. Let f: (X, τ) → (Y, σ) be defined as, f(a) = a, f(b) = b and f(c) = c. Then f is b*gα-continuous but not g#s-continuous. Since f⁻¹{a, b} = {a, b} is not g#s-closed in (X, τ).

Theorem: 5.10
Every gψ-continuous map is b*gα-continuous map.

Proof:
Let V be a closed set in (Y, σ). Since f is gψ-continuous map. Therefore f⁻¹(V) is a gψ-closed in (X, τ). But every gψ-closed set is b*gα-closed set. Hence f⁻¹(V) is b*gα-closed set in (X, τ). Hence f is b*gα-continuous. Therefore every gψ-continuous map is b*gα-continuous map.

The converse of the above theorem need not be true by the following example.

Example: 5.11
Let X = {a, b, c} = Y with τ = {X, φ, {a}}, σ = {Y, φ, {b}}, gψ C(X, τ) = {X, φ, {b}, {c}, {b, c}} and b*gα C(X, τ) = {X, φ, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}}. Let f: (X, τ) → (Y, σ) be defined as, f(a) = c, f(b) = b and f(c) = a. Then f is b*gα-continuous but not gψ-continuous. Since f⁻¹{a, c} = {a, c} is not gψ-closed in (X, τ).

Theorem: 5.12
Every g-continuous map is b*gα-continuous map.

Proof:
Let V be a closed set in (Y, σ). Since f is g-continuous map. Therefore f⁻¹(V) is a g-closed in (X, τ). But every g-closed set is b*gα-closed set. Hence f⁻¹(V) is b*gα-closed set in (X, τ). Hence f is b*gα-continuous. Therefore every g-continuous map is b*gα-continuous map.

The converse of the above theorem need not be true by the following example.

Example: 5.13
Let X = {a, b, c} = Y with τ = {X, φ, {a}}, σ = {Y, φ, {b}}, g C(X, τ) = {X, φ, {b, c}} and b*gα C(X, τ) = {X, φ, {a}, {b, c}, {a, b}, {b, c}, {a, c}}. Let f: (X, τ) → (Y, σ) be defined as, f(a) = a, f(b) = b and f(c) = c. Then f is b*gα-continuous but not g-continuous. Since f⁻¹{a, c} = {a, c} is not g-closed in (X, τ).

Theorem: 5.14
i) Every αgα-continuous map is b*gα-continuous map.
ii) Every s'gα-continuous map is b*gα-continuous map.

Proof:
i) Let V be a closed set in (Y, σ). Since f is αgα-continuous map. Therefore f⁻¹(V) is a αgα-closed in (X, τ). But every αgα-closed set is b*gα-closed set. Hence f⁻¹(V) is b*gα-closed set in (X, τ). Hence f is b*gα-continuous. Therefore every αgα-continuous map is b*gα-continuous map.

ii) Let V be a closed set in (Y, σ). Since f is s'gα-continuous map. Therefore f⁻¹(V) is a s'gα-closed in (X, τ). But every s'gα-closed set is b*gα-closed set. Hence f⁻¹(V) is b*gα-closed set in (X, τ). Hence f is b*gα-continuous. Therefore every s'gα-continuous map is b*gα-continuous map.

The converse of the above theorems need not be true by the following example.
Example: 5.15

Let \(X = \{a, b, c\} = Y \) with \(\tau = \{X, \phi, \{a, b\}\} \), \(\sigma = \{Y, \phi, \{a, c\}\} \).
\[\forall \alpha \in \mathcal{C}(X, \tau) = \{X, \phi, \{c\}, \{b, c\}, \{a, c\}\} \]
\[s'_{\alpha} \mathcal{C}(X, \tau) \text{ and } b'_{\alpha} \mathcal{C}(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b, c\}\}. \]
\[\text{Let } f: (X, \tau) \to (Y, \sigma) \text{ be defined as, } f(a) = a, f(b) = b \text{ and } f(c) = c. \]
Then \(f \) is \(b'_{\alpha} \)-continuous but not \(\alpha_{\phi} \)-continuous and \(s'_{\alpha} \)-continuous. Since \(f^{-1}\{b\} = \{b\} \) is not \(\alpha_{\phi} \)-closed and \(s'_{\alpha} \)-closed in \((X, \tau) \).

We introduce the following definition.

Definition: 5.16

A function \(f: (X, \tau) \to (Y, \sigma) \) is called \(b^*_{\alpha} \)-irresolute if \(f^{-1}(V) \) is a \(b^*_{\alpha} \)-closed set of \((X, \tau) \) for every \(b^*_{\alpha} \)-closed set of \((Y, \sigma) \).

Theorem: 5.17

Every \(b^*_{\alpha} \)-irresolute function is \(b^*_{\alpha} \)-continuous.

Proof:

Let \(V \) be a closed set in \((Y, \sigma)\). Since every closed set is \(b^*_{\alpha} \)-closed set. Therefore \(V \) is \(b^*_{\alpha} \)-closed set of \((Y, \sigma)\).
Since \(f \) is \(b^*_{\alpha} \)-irresolute, \(f^{-1}(V) \) is \(b^*_{\alpha} \)-closed set in \((X, \tau)\). Therefore \(f \) is \(b^*_{\alpha} \)-continuous.

Example: 5.18

Let \(X = \{a, b, c\} = Y \) with \(\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{Y, \phi, \{a, c\}, \{a, b, c\}\} \). \(b^*_{\alpha} \mathcal{C}(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{a, c\}, \{a, b, c\}\} \).
\[\text{Let } f: (X, \tau) \to (Y, \sigma) \text{ be defined as, } f(a) = b, f(b) = a \text{ and } f(c) = c. \]
Here \(f \) is \(b^*_{\alpha} \)-continuous but \(f \) is not \(b^*_{\alpha} \)-irresolute. Since \(\{a, b\} \) is \(b^*_{\alpha} \)-closed set in \((Y, \sigma)\) but \(f^{-1}\{a, b\} = \{a, b\} \) is not \(b^*_{\alpha} \)-closed set in \((X, \tau)\).

Theorem: 5.19

Let \((X, \tau), (Y, \sigma) \) and \((Z, \eta)\) be any three topological spaces. Let \(f: (X, \tau) \to (Y, \sigma) \) and \(g: (Y, \sigma) \to (Z, \eta) \) be any two functions. Then,

i) \(g \circ f: (X, \tau) \to (Z, \eta) \) is \(b^*_{\alpha} \)-continuous if \(g \) is continuous and \(f \) is \(b^*_{\alpha} \)-continuous.

ii) \(g \circ f: (X, \tau) \to (Z, \eta) \) is \(b^*_{\alpha} \)-continuous if \(g \) is \(b^*_{\alpha} \)-continuous and \(f \) is \(b^*_{\alpha} \)-continuous.

iii) \(g \circ f: (X, \tau) \to (Z, \eta) \) is \(b^*_{\alpha} \)-irresolute if both \(g \) and \(f \) are \(b^*_{\alpha} \)-irresolute.

Proof:

i) Let \(V \) be a closed set in \((Z, \eta)\). Since \(g \) is continuous, \(g^{-1}(V) \) is closed in \((Y, \sigma)\). Since \(f \) is \(b^*_{\alpha} \)-continuous, \(f^{-1}(g^{-1}(V)) = g \circ f^{-1}(V) \) is \(b^*_{\alpha} \)-closed in \((X, \tau)\). Therefore \(g \circ f \) is \(b^*_{\alpha} \)-continuous.

ii) Let \(V \) be a closed set in \((Z, \eta)\). Since \(g \) is \(b^*_{\alpha} \)-continuous, \(g^{-1}(V) \) is \(b^*_{\alpha} \)-closed in \((Y, \sigma)\). Since \(f \) is \(b^*_{\alpha} \)-irresolute, \(f^{-1}(g^{-1}(V)) = g \circ f^{-1}(V) \) is \(b^*_{\alpha} \)-closed in \((X, \tau)\). Therefore \(g \circ f \) is \(b^*_{\alpha} \)-continuous.

iii) Let \(V \) be a \(b^*_{\alpha} \)-closed set in \((Z, \eta)\). Since \(g \) and \(f \) are \(b^*_{\alpha} \)-irresolute, \(f^{-1}(g^{-1}(V)) \) is \(b^*_{\alpha} \)-closed in \((X, \tau)\). Therefore \(g \circ f \) is \(b^*_{\alpha} \)-continuous.

VI. \(b^*_{\alpha} \)-OPEN MAPS and \(b^*_{\alpha} \)-HOMEOMORPHISMS

Definition: 6.1

A map \(f: (X, \tau) \to (Y, \sigma) \) is called a \(b^*_{\alpha} \)-open map if \(f(U) \) is \(b^*_{\alpha} \)-open in \((Y, \sigma)\) for every open set \(U \) of \((X, \tau)\).

Definition: 6.2

A map \(f: (X, \tau) \to (Y, \sigma) \) is called a \(b^*_{\alpha} \)-closed map if \(f(U) \) is \(b^*_{\alpha} \)-closed in \((Y, \sigma)\) for every closed set \(U \) of \((X, \tau)\).

Definition: 6.3

A map \(f: (X, \tau) \to (Y, \sigma) \) is called a \(b^*_{\alpha} \)-homeomorphism if \(f \) is \(b^*_{\alpha} \)-continuous and \(b^*_{\alpha} \)-open.
Theorem 6.4

Every open map is a b^*g_x-open map.

Proof:

Let $f: (X, \tau) \to (Y, \sigma)$ be an open map. Let U be an open set in (X, τ). Since f is an open map, therefore $f(U)$ is open set in (Y, σ). Since every open set is a b^*g_x-open set in (Y, σ). Then $f(U)$ is b^*g_x-open in (Y, σ). Hence f is a b^*g_x-open map.

Theorem 6.5

Every g_x-open map is a b^*g_x-open map.

Proof:

Let $f: (X, \tau) \to (Y, \sigma)$ be an g_x-open map. Let U be an open set in (X, τ). Since f is an g_x-open map, therefore $f(U)$ is g_x-open set in (Y, σ). Since every g_x-open set is a b^*g_x-open set in (Y, σ). Then $f(U)$ is b^*g_x-open in (Y, σ). Hence f is a b^*g_x-open map.

Remark 6.6

- Every g^2x-open map is a b^*g_x-open map.
- Every g^s-open map is a b^*g_x-open map.
- Every g^Ψ-open map is a b^*g_x-open map.
- Every g^α-open map is a b^*g_x-open map.
- Every s^α-open map is a b^*g_x-open map.

Theorem 6.7

Every b^*g_x-open map is a gsp-open map.

Proof:

Let $f: (X, \tau) \to (Y, \sigma)$ be an b^*g_x-open map. Let U be an open set in (X, τ). Since f is an b^*g_x-open map, therefore $f(U)$ is b^*g_x-open set in (Y, σ). Since every b^*g_x-open set is a gsp-open set in (Y, σ). Then $f(U)$ is gsp-open in (Y, σ). Hence f is a gsp-open map.

Theorem 6.8

Every homeomorphism is a b^*g_x-homeomorphism.

Proof:

Let f be a homeomorphism from a topological space (X, τ) into a topological space (Y, σ). Since every continuous map is b^*g_x-continuous and every open map is b^*g_x-open map, we conclude that f is a b^*g_x-homeomorphism.

Theorem 6.9

Every g_x-homeomorphism is a b^*g_x-homeomorphism.

Proof:

Let f be a g_x-homeomorphism from a topological space (X, τ) into a topological space (Y, σ). Since every g_x-continuous map is b^*g_x-continuous and every g_x-open map is b^*g_x-open map, we conclude that f is a b^*g_x-homeomorphism.

Remark 6.10

- Every g^2x- homeomorphism is a b^*g_x- homeomorphism.
- Every g^s- homeomorphism is a b^*g_x- homeomorphism.
- Every g^Ψ- homeomorphism is a b^*g_x- homeomorphism.
- Every g^α- homeomorphism is a b^*g_x- homeomorphism.
- Every s^α- homeomorphism is a b^*g_x- homeomorphism.
- Every s^α- homeomorphism is a b^*g_x- homeomorphism.
Theorem 6.11
Every b*gα-homeomorphism is a gsp-homeomorphism.

Proof:
Let f be a b*gα-homeomorphism from a topological space (X, τ) into a topological space (Y, σ). Since every b*gα-continuous map is gsp-continuous and every b*gα-open map is gsp-open map, we conclude that f is a gsp-homeomorphism.

REFERENCES